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The interplay between the structural and magnetic phase transitions occurring in the Fe-based pnictide
superconductors is studied within a Ginzburg-Landau approach. We show that the magnetoelastic coupling
between the corresponding order parameters is behind the salient features observed in the phase diagram of
these systems. This naturally explains the coincidence of transition temperatures observed in some cases as
well as the character �first or second order� of the transitions. We also show that magnetoelastic coupling is the
key ingredient determining the collinearity of the magnetic ordering and we propose an experimental criterion
to distinguish between a pure elastic from a spin-nematic-driven structural transition.
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The discovery of an unconventional high-temperature su-
perconductivity in the F-doped arsenic-oxide LaFeAsO �Ref.
1� has given rise to a great interest on iron pnictide com-
pounds. To date several families of Fe-based superconduct-
ors have been discovered and the superconducting transition
temperature has been raised to above 50 K.2 All of these
systems display an intriguing competition between structural,
magnetic, and superconducting transitions.2,3 The parent
compounds of the so-called 1111 and 111 families undergo a
structural transition �ST� followed by a magnetic transition
�MT� at a lower temperature4 whereas in the 122 and 11
cases these two transitions take place simultaneously.5–8 In
any case these orderings are quickly suppressed by doping or
by applying pressure, which eventually gives rise to super-
conductivity. The role, if any, of magnetic and elastic degrees
of freedom in inducing this superconductivity is currently an
open question. There is already a growing body of theoretical
works advocating for spin fluctuation mediated
superconductivity9 but the isotope effect observed in both
magnetism and superconductivity suggests that the elastic
medium also plays a role.10 It is therefore compelling to
understand the connection between the ST and the MT in
these systems.

The ST, for example, has been studied in Refs. 11–13,
where it has been identified with a spin-nematic ordering but
ignoring the possible softening of the lattice itself. This idea
has been further elaborated in Ref. 14, where the observed
softening of the lattice is interpreted as due to the fluctua-
tions of the emerging nematic degrees of freedom. On the
other hand, the study of the MT in Ref. 15 focuses on the
role of the magnetoelastic �ME� couplings in producing a
weak first-order MT by means of the Larkin-Pikin
mechanism.16 This latter is relevant only in the fluctuation
dominated Ginzburg regime and is subjected to the condition
of a MT with diverging specific heat in the absence of ME
coupling. Furthermore, the collinearity of the magnetic mo-
ments is examined in Ref. 17 by using a purely electronic
model.

In this paper we study the ST and the MT using a
Ginzburg-Landau approach, in which the interplay between
elastic and magnetic degrees of freedom is considered ex-
plicitly. This provides a general unified framework that goes

beyond previous phenomenological approaches and rational-
izes different experimental findings. We address, in particu-
lar, the simultaneity of the ST and MT, their character �first
versus second order�, the collinearity of the magnetic struc-
ture, and the spin-nematic scenario for the ST. Our study
identifies a particular ME coupling �see Eq. �2� below� as the
common key factor behind the salient features of the ST and
MT in the Fe-based superconductors.

Our main results are the following. �i� We derive the gen-
eral phase diagram of the ST and MT, which exhibits four
qualitatively different regimes, as shown in Fig. 1. This ex-
plains why the simultaneous ST and MT in the 122 com-
pounds are sometimes observed as second-order transitions6

�Ia in Fig. 1� and sometimes as first order5 �Ib in Fig. 1�.
Moreover, when the two transitions are separate but close
enough, we predict the MT to be first order �IIa in Fig. 1�.
This richness of the phase diagram is due to the ME cou-
pling. �ii� The collinearity of the magnetic moments is linked
to the existence of the ME term allowed by symmetry. �iii� In
regime II where the two transitions are separate, the ST can
be a consequence of either a purely elastic instability of the
lattice or due to a spin-nematic transition. Here we develop
an experimental criterion to distinguish between these two
possibilities. �iv� The fluctuations associated with the ST are
shown to become critical only along certain lines of high
symmetry in the Brillouin zone both for a pure elastic ST as
well as for a spin-nematic-driven ST. Consequently, in both
the scenarios the ST has a mean-field behavior.13

For concreteness we assume for the present discussion
that the ST is a pure elastic one for which the order param-
eter is the shear strain uxy,

18 where subscripts refer to the
principal axes of the tetragonal lattice �with two and four Fe
atoms per unit cell for the 1111 and the 122 systems respec-
tively, see Fig. 2�a��. Thus uxy �0 implies the monoclinic
distortion of the tetragonal unit cell observed experimentally,
as illustrated in Fig. 2�b�. The qualitative aspects of the cur-
rent discussion remain unchanged for the case where the ST
is spin-nematic driven, which we treat later. The description
of the MT requires two Néel vectors,19 L1 and L2, which can
be associated with the spontaneous magnetizations M1 and
M2 of the two interpenetrating Fe sublattices �Fig. 2�b��. The
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Ginzburg-Landau free energy then can be conveniently writ-
ten as

FGL = FM + FE + FME. �1�

Here the magnetic part is FM = 1
2A�L1

2+L2
2�+ 1

4B�L1
4+L2

4�. In
principle, fourth order terms of the form L1

2L2
2 and �L1 ·L2�2

are also allowed by symmetry but we omit them because the
former does not affect the results qualitatively while the lat-
ter is generated by the ME coupling �see below�. In a con-
tinuum description the free energy for the elastic part is quite
standard, and the case with a tetragonal symmetry is de-
scribed by six elastic moduli and the various components of
the strain tensor.20 However, to simplify the discussion, in
the following we consider explicitly only the critical strain
uxy and we write FE= 1

2c66uxy
2 + 1

4�uxy
4 . The coefficients A and

c66 are assumed to vary with the temperature as A=A��T
−TN

0 � and c66=c66� �T−TS
0�. TN

0 and TS
0 are the nominal MT and

ST temperatures, respectively �not to be confused with the
actual transition temperatures TN and TS�, taken as the con-
trol parameters of our theory. According to Mermin-Wagner
theorem, a finite TN

0 implies that the magnetism is three di-
mensional. The remaining coefficients B, C, and � are taken
as positive constants. As regards the ME term, the key con-
tribution is13–15

FME = g1uxy�L1 · L2� , �2�

where g1�0 in order to be consistent with the experimental
observation that the ferromagnetic Fe-Fe bonds are shorter

than the antiferromagnetic ones in the collinear-Néel state.
To our purposes, the standard magnetostriction ull�L1

2+L2
2�

can be neglected because it does not change qualitatively the
results. It is worth mentioning that, in the context of the
cuprate superconductors, a similar free energy FGL was used
to study the structural transition of doped La2SrCuO4.21

The free energy in Eq. �1� is phenomenological in nature
and its structure, which is based on symmetry considerations,
is independent of the underlying microscopic theory. For ex-
ample, the ST can be due to orbital ordering22 or due to
magnetic fluctuations.14 Similarly, the magnetic part of the
free energy can be understood from a band magnetism
picture,17 as well as from a localized magnetism
viewpoint.11,12 The appropriate microscopic description of
the phase transitions is a current open problem.

A microscopic description of the phase transitions is im-
portant to establish how the various coefficients of the
Ginzburg-Landau theory vary with physical parameters such
as doping and pressure. Such a study is beyond the scope of
the current paper. However, it is our empirical observation
that the results are consistent with the current experiments if
we assume that TS

0−TN
0 increases with doping. It is likely that

low doping influences the magnetic sector more �say, via the
loss of nesting between electron and hole bands� than the
elastic medium which is affected indirectly. Furthermore,
sample quality can also alter these parameters23 and, if the
magnetism is anisotropic, TN

0 can also depend strongly on the
coupling between the magnetic planes.11

We anticipate that, experimentally, undoped and lightly
doped 122 systems fall in regimes Ia and Ib in Fig. 1 with
simultaneous transitions of second6 and first5 orders, respec-
tively, and then enter regime IIa at higher doping where the
ST is second order while the separate MT is first order.7 On
the other hand, the 1111 and 111 compounds appear to fall in
the regime IIb, where the transitions are separate �TS�TN�
and second order. Regime IIa has not yet been reported ex-
perimentally for these systems.

Within our framework, the fact that these transitions
sometimes are observed separate and sometimes simulta-
neous is explained as follows. Note that, once the magnetic
order sets in and the collinear-Néel state is formed, there is
an effective shear stress that produces a monoclinic distor-
tion via the ME term �Eq. �2��. Thus, the MT in these sys-
tems implies a ST while the converse is evidently not true.
This gives rise to the regimes I and II in the phase diagram
shown in Fig. 1, which are defined by the conditions TS

0

�TN
0 and TS

0�TN
0 , respectively. Thus, as the temperature is

lowered in regime II there is first the ST at T=TS
0, where

c66=0, followed by a separate MT at TN=TN
0

TS -TN

TS

TN

Ib IIa
T

TN =TS
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FIG. 1. �Color online� Schematic T vs doping diagrams for the
structural and magnetic phase transitions �top panels� and general
phase diagram T vs TS

0−TN
0 determined by our Ginzburg-Landau

theory Eq. �1� �bottom panel�. Empirically TS
0−TN

0 increases with
doping. In the regions I the transitions are simultaneous while in
regions II they occur at different temperatures TS and TN. Continu-
ous �dotted� lines indicate second- �first-� order transitions. The
background-color intensity indicates the strength of the
discontinuity.

M1
M2

FIG. 2. �Color online� �a� Tetragonal Fe lattice �drawn as two
interpenetrating sublattices� at temperatures T�TS ,TN. �b� A mono-
clinic distortion of the tetragonal unit cell and a collinear Néel order
in the two Fe sublattices take place at T�TS ,TN.
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+ �g1u0�TN�� /A�, where u0�T�= � ��TS
0−T�c66� /��1/2 is the

value of the strain order parameter uxy in the monoclinic
phase at T�TS. In the regime I, however, the system encoun-
ters the MT first at T=TN

0 , where A=0, but simultaneously
the ST occurs due to the effective stress in the ME term. In
this regime, unlike in II, there is no instability of the lattice
because the elastic modulus c66 stays finite �and jumps across
the transition�.

The two regimes above are divided in their turn into sub-
regimes Ia, Ib, IIa, and IIb according to the character, first or
second order, of the MT. This is again due to the ME cou-
pling and is not related to symmetry reasons such as the
existence of cubic invariants. The point is that sufficiently
close to TS

0=TN
0 , the effective coefficient of the fourth-order

term in the magnetic sector becomes negative turning the
MT first order �in which case, one has to include higher order
terms to bound the free energy from below�. This is readily
seen in the regime I �TS

0�TN
0 �, where the elastic sector is

stable and one can ignore the uxy
4 term in FE. Indeed mini-

mizing FGL one gets uxy =−g1�L1 ·L2� /c66, which implies that
the elastic sector generates an effective magnetic term of the
form −g1

2�L1 ·L2�2 / �2c66�. The coefficient of this term is ar-
bitrarily large near TS

0=TN
0 . The MT into the collinear-Néel

state turns first order when this term is sufficiently strong
with the tricritical point given by c66=g1

2 /B and A=0. The
logic is quite similar in the regime II �TS

0�TN
0 �, where one

first has to expand uxy =u0+�u0 in the monoclinic phase to
then obtain �after further minimization� �u0=
−g1�L1 ·L2� / �2�c66��. This implies an effective magnetic term
−g1

2�L1 ·L2�2 / �4�c66�� which drives the MT first order, with
the tricritical point given by A=g1u0�TN� and c66=−g1

2 / �2B�.
In both the regimes the discontinuity is increased as the sys-
tem approaches the point TS

0=TN
0 �indicated by the color in-

tensity in Fig. 1�. These results have to be contrasted to Ref.
15, where strong fluctuations are required and weaker first-
order transitions with narrower hysteresis, are expected.

At this stage, the role of the ME coupling in favoring the
collinear-Néel state observed experimentally24 is quite
straightforward. In regime II the collinearity is due to the
term g1u0�L1 ·L2�, which lifts the degeneracy of the transi-
tion temperatures for L�= 1

�2
�L1�L2�. This implies that only

one between L� is nonzero in the ordered state �which one in
particular depends on the sign of u0, i.e., on the ferroelastic
domain�. In regime I, however, the reason is different. In this
case the set up of the collinear order is associated with the
negative coefficient −g1

2 / �2c66� in front of the term �L1 ·L2�2,
generated by the ME coupling. Presumably, the vicinity to
the structural instability, where c66 is small, makes the ME
term strong enough to overcome any other contribution �due
to, e.g., magnetic interactions� and thus forces collinearity.

In region II of the phase diagram there are two different
physical scenarios to conceptualize the ST, namely, a pure
ferroelastic transition and a transition induced by a spin-
nematic ordering. �a� In the first scenario we have a proper
ferroelastic instability in FE caused by the vanishing of the
elastic modulus c66 �the case described until now�. An imme-
diate consequence is that the temperature range over which
the monoclinic distortion has square-root behavior u0�T�
� �TS−T�1/2 is the same as the temperature range over which

the elastic modulus is expected to have a linear dependence
c66� �T−TS�. �b� The second scenario arises from the possi-
bility that above TN the system enters a spin-nematic state in
which the two Néel vectors are zero in average but fluctuate
in phase.25 The description of this state requires the introduc-
tion of an additional Ising order parameter � which is inde-
pendent of but has the same symmetry properties as L1 ·L2.
Now the system is expected to undergo a pseudoproper fer-
roelastic transition driven by the nematic ordering. This case
can be treated if we replace FE in Eq. �1� by

F̃E =
a

2
�2 +

b

4
�4 +

c66

2
uxy

2 +
�

4
uxy

4 + g2uxy� , �3�

where a=a��T−Tn
0� with Tn

0 being the nominal-nematic tran-
sition temperature while all other coefficients are
T-independent �including c66 for this discussion�. In the ab-
sence of the ME coupling of Eq. �2� the structural-nematic
transition, below which uxy ���0, occurs at TSN

0 =Tn
0

+g2
2 / �c66a��, where the effective elastic modulus c̃66=c66

−g2
2 /a vanishes. The arguments given earlier for the phase

diagram and the collinearity of the magnetic order hold
equally well for this case, except now TS

0 in Fig. 1 has to be
replaced by TSN

0 . However, in this case the range of tempera-
tures over which c̃66� �T−TS� is restricted to the condition
�T−TS��g2

2 / �c66a��. This range is in principle different from
the one over which the monoclinic distortion has square-root
dependence, and gives a different behavior compared to case
�a�. This difference, schematically represented in Fig. 3, can
be used as a quantitative criterion to distinguish experimen-
tally between the pure ferroelastic and the spin-nematic-
induced scenarios. These considerations are based on a mean
field analysis of the ST, which we justify in the following.

Previous studies on ferroelastics26 have shown that a
second-order ST, like in the proper ferroelastic scenario �a�,
displays a mean-field behavior. This follows from the fact
that at the transition point, where the elastic modulus c66
=0, the phonon velocity remains finite everywhere in the
Brillouin zone �q space�, except along the two lines of high
symmetry qx=0 and qy =0 on the qz=0 plane. Consequently,
except for these “soft” lines, the long-wavelength critical ex-
citations associated with the strain field uxy are gapped and
the transition in three dimensions is mean-fieldlike.26 The
contribution of these excitations to FE can be written as
�FE= 1

2�q�0c66�q��uxy�q��2+¯, where the ellipsis denotes
noncritical modes and interaction terms. Near the soft lines

c66 ······ pure ferroelastic
c66 - - - spin-nematic
u2xy

T-TS0

FIG. 3. �Color online� Expected temperature dependence of the
squared spontaneous strain uxy

2 and the elastic modulus c66 in sce-
narios �a� proper ferroelastic instability and �b� driven by spin-
nematic ordering. Large deviations from a linear behavior in c66 as
compared to uxy

2 indicate spin-nematic ordering.
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c66�q� � c66 + c1 cos2 	 + c2 sin2 2
 sin4 	 + �q2 �4�

where 	 and 
 represent the polar and the azimuthal angles,
respectively, in q space.26 Here the �q2 contribution is due to
harmonic terms in the free energy with higher order spatial
derivatives �the usual stiffness associated with collective ex-
citations� and c1 and c2 are constants that depend on the
elastic moduli of the system.27 In the scenario �b� the situa-
tion is slightly more subtle. Indeed, if we ignore the coupling
g2uxy�, it appears that the nematic transition, which belongs
to the Ising class, is in three dimensions below its upper
critical dimension and therefore it is not mean-field type.
However, the ME coupling gives rise to anisotropic correc-
tions to the mass of the � field. In fact the resulting mass
term can be written as F�= 1

2�q�0a�q����q��2, where a�q�
=a−g2

2 /c66�q�. As a consequence, in this scenario too, the
long-wavelength critical excitations are gapped except along
the two soft lines.28 So the ST is mean field type in both the
scenarios.

We finally discuss some limitations of our study. We have
restricted ourselves to magnetic states describable in terms of
the Néel vectors L1 and L2. This includes the collinear �� ,0�
�or �0,��� “stripe” order observed experimentally. In the
case of a different magnetic ground state the corresponding
Ginzburg-Landau theory may have a different form with
structural and magnetic orderings not necessarily coupled.
This seems to be the case in BaMn2As2, where a G-type
antiferromagnetic order is found and no structural distortion

is observed.29 The same applies to 11 Fe chalcogenides, for
which, in addition, the question of whether the magnetic or-
der is intrinsic or arises from nonstoichiometry, i.e., due to
interstitial Fe ions inducing weak charge localization, is still
open.30 Critical fluctuations are also not considered in our
theory. While we expect that they will not change the nature
of the ST, they certainly will enhance the effects of the
Larkin-Pikin mechanism16 on the MT. We do expect there-
fore an enlargement of the first order MT region �Ib and IIa
in Fig. 1�. All these considerations, as well as making contact
with microscopic theories, deserve deeper investigation in
future studies.

In summary, we have shown that the magnetoelastic cou-
pling Eq. �2� plays a key role in producing the specific fea-
tures of the structural and magnetic transitions in the Fe-
based superconductors. This coupling is responsible for the
simultaneity of the transitions observed in the 122 systems
and explains the different characters �first order and second
order� of the transitions reported so far. It also naturally ex-
plains the collinearity of the magnetic order. We have also
addressed the question of the possibility of a spin-nematic-
driven structural transition, indicating an experimental way
to distinguish this type of scenario from a proper ferroelastic
transition.

We acknowledge G. Garbarino, E. Kats, M. Núñez-
Regueiro, J. Schmalian, and T. Ziman for stimulating
discussions.
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